
Hannes Ricklefs (d1132332) 3/24/2005

Page 1 of 5

Programming for Graphics
Particle System initial design report

Hannes Ricklefs

d1132332@bmth.ac.uk
University of Bournemouth

ABSTRACT
This report is structured into three different sections. The first section gives a brief introduction into particle systems.
The second provides a description of each of the components that combine the particle system. The third gives a brief
summary of the report and the main focus when implementing the particle system.

Keywords
Particle System, Particles, Emitter, Solver, Data Structures

1. INTRODUCTION... 1
2. PARTICLE SYSTEM... 1

2.1 Overview... 1
2.2 Particle System Manager 1
2.3 Particle System... 2
2.4 Emitter .. 2
2.5 Particles... 2
2.6 Solver .. 3
2.7 Data Structure... 3

3. SUMMARY... 4
4. APPENDIX A.. 4
5. REFERENCES .. 4

1. INTRODUCTION
Since their introduction in 1983 particle systems have
become one of the fundamental parts of computer
animation [1]. The pioneer in this area is William T.
Reeves, in his initial paper he describes the use of particle
systems to model “fuzzy” objects such as fire and clouds.
Since then particle systems have been used in scientific
simulations, feature films [1,8] and games [10] to model
almost any kind of natural phenomena including smoke
[3,6,8], fire [1,3,4,8], water [4,6,9], explosions [1,5,7],
plant growth [2] and galaxies [3].

2. PARTICLE SYSTEM

2.1 Overview
As described by Reeves [1] a particle system is defined by
a collection of particles that evolve over time. The
evolution is determined through applying certain rules to
the particles: creation of new particles, changing their

attributes during their lifetime and finally the destruction
(“death”) of old particles. The main essence of a particle
system is that all of the afore mentioned rules are
executed automatically. In general, particle systems are
constructed using the following components: particles,
emitters and solvers [1,2,3,4,5,10,11,12,13,14].

The proposed design will evolve its particles according to
these five steps [1,10,11].

1) New particles are generated and injected into the
current system.

2) Each new particle is assigned its individual
attributes.

3) Any particles that have exceeded their lifetime
are extinguished.

4) The current particles are moved according to
their scripts.

5) The current particles are rendered.

The main aim of this proposed design is to have a particle
system that is easy to extend for all the components in the
system. The components are Particle System Manager,
Particle System, Emitter, Particle, Solver, and Data

Structure.

2.2 Particle System Manager
In his article J. Burg mentions a Particle System Manager,
which controls all the various particle systems [5]. As the
proposed design supports multiple particle system a
manager class becomes important. The manager class is
in charge of creating, releasing, updating, and rendering
all of its particle systems. The particle system manager
needs to have a timer in order to function according to
their sequence in time.

Hannes Ricklefs (d1132332) 3/24/2005

Page 2 of 5

2.3 Particle System
The particle system class is responsible for holding all the
initialization values for its solver, particles, and emitter.
One aspect of the proposed design is to be able to
combine particle systems in such a way that a particle
system itself can include other particle systems in order to
create images as in Figure.1 [1].

Figure.1 from [1]

 Furthermore, the particle system is able to change over
time, which will allow effects like a glowing cigarette
particle that turn into smoke. Therefore the particle
system class needs to hold all the relevant attributes,
solvers and emitters to make the changes to its particles.
Evermore, the particle system counts the number of alive
particles to determine whether a system is ready to be
deleted or not.

The class diagram in Appendix A shows two subclasses
of the particle system class: Behavior Particle System and
Effect Particle System. The Behavior Particle System
enables interaction between particles in order to model
flocking behavior [15,16].

The Effect Particle System enables quick instantiation of
a system to create effects such as fire, explosions, smoke,
etc. It could become as a super class and have special Fire
Particle Systems, Smoke Particle System as its sub
classes. This would allow other developers to use the
particle system as an application programmer interface
(API) [13].

2.4 Emitter
For a particle system to evolve and change its volume
over time new particles need to be added to the system.
This is the main work of the emitter, who generates new
particles by means of controlled stochastic processes
[1,11]. For each frame new particles are randomly emitted
into the system according to some user specified
distribution [11]. Both [1,11] propose to use two different
equations in order to calculate the number of new
particles.

(Eq. 1) NParts = MeanParts + Rand(_) * VarParts

(Eq. 2) NParts = (MeanParts +Rand(_) * VarParts) *

ScreenArea

Where Rand(_) returns a random number between -1.0
and +1.0, MeanParts states the mean number of particles,
and VarParts its variance [1,11]. In the second formula
(Eq. 2) the screen size of the object determines the
number of new particles in the system.

In the proposed design all particle behavior is assigned
from the emitter: Emitting direction, Initial velocity,

Bounce factor, Friction, Color, Transparency, Radius,

Gravity and Texture Map. All the initial values will be
set at random at the beginning of a particle’s life.

The class diagram in Appendix A shows that the Emitter
class is an abstract class. In order to have the most
flexibility when creating new particles the following
Emitter types are proposed:

1) Spherical Emitter: Particles are emitted from the
surface of a sphere. The Emitter has a radius and
a sweep angel for both the top and the bottom in
order to allow particles to be emitted from a ring
shape.

2) Cubical Emitter: Particles are emitted from a
cubical shape. The Emitter has length, width, and
depth.

3) Shape Emitter: Particles will be emitted from the
shape/geometry passed into the constructor. This
will allow converting shapes/geometries into
particles. For example a head could dissolve into
smoke.

4) Planar Emitter: Particles are emitted from a
plane. The Emitter has a width, depth and
direction.

2.5 Particles
The particles determine the motion, volume, color and
general appearance of the particle system. Typical
Attributes according to [1,5,11] are: position, velocity,

color, transparency, and lifetime. In [5] J. Burg adds
two attributes oldPosition, texture and dead. OldPosition
enables to stretch a particle between its old and new
position, which can be useful when creating sparks.
Texture enables particles to have a texture assigned to
them. The attribute dead is particular effect introduced by
J. Burgs article. He states that instead of deleting and
creating new particles, a dead particle should be flagged
and then reinitialized when new particles are created. This
reduces the amount of memory access and is hence faster.

In [4] Sims adds jet another attribute called bounce,

which specifies what happens to a particle when colliding
with other particles or objects in the scene.

Hannes Ricklefs (d1132332) 3/24/2005

Page 3 of 5

The class diagram in Appendix A shows that the particle
class has three subclasses:

1) Point Particle: A Particle is just a point in space.

2) Plane Particle: A Particle consists of two
triangles that form a rectangle [5] as shown in
Figure.2.

Figure 2 from [5]

For this particle the author ensures that the plane
will always face the camera (bill-boarding).

3) Volume Particle: A Particle consists of a
shape/geometry passed to the constructor.

4) Force Particle: A Particle can be used to be a
force for other Particles [3].

5) Changing Particle: A Particle can change its
Solver over time. This allows a particle to
behave as a fire particle and then change its
behavior to smoke after a certain duration.

2.6 Solver and Forces
In order to create any of the effects mentioned in section 1
the particles need to be animated. Although many effects
need specialized algorithms, this particle system is
designed to incorporate new algorithms very easily. By
specifying a Solver interface newly created algorithms
can be “plugged” into the particle system. The literature
presents all kinds of different solvers from basic linear
solvers to advanced solvers using Navier-Stokes
equations [6,8,9]. In [3,4,14] the authors are introducing
Forces into the movement of the particles. To give more
flexibility this design separates the forces into classes in
order for the Solver to choose one or many correct forces.
In [14] A. Witkin groups the forces into three broad
categories, which form the three subclasses of the Force
class:

1. Unary forces, such as gravity and drag, that act
independently on each particle, either exerting a
constant force, or one that depends on one or
more particle positions, particle velocity, and
time.

2. n-ary forces, such as springs, that apply forces to
a fixed set of particles.

3. Forces of spatial interaction, such as attraction
and repulsion, which may act on any or all pairs
of particles, depending on their positions.

The class diagram in Appendix A. shows the Solvers the
author is proposing to implement:

1. Basic Solver: Solves particle movement
according to a linear equation. Particles fly
through space at constant time.

2. Gravity Solver: Solves particle movement
according using gravity. Particles fly through
space and the direction and speed varies
according to the laws of gravity.

3. Navier-Stokes Solver: This is the most advanced
Solver. In order for the Solver to work properly a
3D data structure is needed [6,18,19].

2.7 Data Structure
Through the ever-increasing speed of processing power in
computer hardware, particle systems are reaching a stage
at which they can be used to create effects close to reality
in real-time [3]. In the special effects industry this is still
not achieved [8]. In order to create satisfying results in
real-time, the number of particles used within a particle
system needs to be within thousands [5]. Therefore an
efficient data structure is needed to store the particles.

Whenever complex or efficient storage requirements are
needed, the literature refers to Octrees [6,12,18,19].
Octrees are a hierarchical construct for spatially managing
large amounts of three-dimensional data [12,17]. Their
construction is well documented and researched
[12,17,18]. The usual approach is to start with a three-
dimensional cube and continually subdivide it into eight
cubes until either a specified cube size is reached or there
are no more objects that could be subdivided. See figure
2.

 Figure 2 from [19]

When implementing an Octree data structure for particle
systems, additional aspects need to taken into
consideration. The main aspects are finding neighbors on
the faces, edges and vertices of the corners, the constant
subdividing of the sub-cubes, and changing particles from
one cube to another.

Hannes Ricklefs (d1132332) 3/24/2005

Page 4 of 5

The main benefit of Octrees is the ability to store extra
information within nodes that can be applied when
solving the animation of the particles using the Navier-
Stokes solver.

The class diagram in Appendix A. shows additional data
structures the author proposes:

1. Grid: A three-dimensional grid structure with a
gird size of 30 * 30 * 30.

2. List: A data structure that uses a list container
class from the standard C++ library. Here some
special sorting algorithm (bubble or quick sort)
is going to store the particles in an order relating
to their position in the particle space. Another
approach would be to cluster particles according
to their location, as stated in section 2.5.

3. Octree: The aforementioned data structure.

It is the data structures responsibility to do collision
detection between the particles and objects from within
the scene. Additionally, the data structure is responsible
for creating a pool of deleted “dead” particles that can be
reused when new particles are created. Furthermore, the
data structure will have a method to only select a subset
of particles in order to have high numbers of particles
within the particle system and still be able to perform
simulations in real-time [4].

3. SUMMARY
This report outlined the components the author is
planning to implement for the assignment. His main focus
is on the extendibility of any of the components and the
combination of particle systems with in particle systems.

The outline of the algorithm for evolving a particle
system is as follows:

Create particles

Initialize particles

For each frame:

 For each simulation time increment:

 Select particles

 Perform operations

 Update position and other attributes

 Evolve age remove dead particles

Render

The resulting demonstrations of the particle system will
include: grass growth, explosion, and a waterfall.

4. APPENDIX A

5. REFERENCES
[1] REEVES, W. T., 1983. Particle Systems – A

Technique for Modeling a Class of Fuzzy Objects,
ACM Transaction on Graphics, 2 (2), 359-367.

[2] REEVES, W. T., AND BLAU R., 1985.
Approximate and Probabilistic Algorithm for
Shading and Rendering Structured Particle Systems,
Computer Graphics, 19(3), 313-322.

[3] ILMONEN, T., AND KONTKANEN J., 2003. The
Second Order Particle System, Journal of WSCG,

11(1)

[4] SIMS, K., 1990. Particle Animation and Rendering
Using Data Parallel Computation, Computer

Graphics, 24(4), 405-413.

[5] BURG, J., 2000. Building an Advanced Particle
System, GAME DEVELOPER, 44-50.

[6] FEDKIW, R., GIBOU, F., AND LOSASSO, F.,
2004. Simulating Water and Smoke with an Octree
Data Structure, SIGGRAPH 2004 ACM TOG, 23,
457-462.

[7] FELDMAN, E. B., O`BRIAN F. J., AND ARIKAN,
O., 2003. Animating Suspended Particle Explosions,
ACM SIGGRAPH 2003, San Diego, CA, July 27-31,

1-8.

[8] FEDKIW, R., ENRIGHT, D., AND NGUYEN, D.,
2003. Simulation and Animation of Fire and Other
Natural Phenomena in the Visual Effects Industry,
Western States Section, Combustion Institute, Fall

Meeting, UCLA, 2003.

[9] MÜLLER, M., CHARYPAR, D., AND GROSS, M.,
2003. Particle-Based Fluid Simulation for Interactive
Applications, Eurographics/SIGGRAPH Symposium

on Computer Animation (2003).

Hannes Ricklefs (d1132332) 3/24/2005

Page 5 of 5

[10] WATT, A. AND POLICARPO F., 2001. 3D GAMES

Real-time Rendering and Software Technology, New
York: ADDISON-WESLEY

[11] PARENT, R., 2002. Computer Animation Algorithms

and Techniques, London:Morgen-Kaufmann.

[12] FOLEY D. J., VAN DAM, A., FEINER, K. S., AND
HUGES, F. F., 1997. Computer Graphics

PRINCIPLES AND PRACTICE, 2nd ed. New York:
Addison-Wesley.

[13] MCALLISTER, K. D., 2000. The Design of an API
for Particle Systems, Technical report, University of

North Carolina, 2000.

[14] WITKIN, A., 1999. Physically Based Modeling
Principles and Practice – Particle Systems,
SIGGRAPH-99 Course Notes.

[15] REYNOLDS, W. C., 1987. Flocks, Herds, and
Schools: A Distributed Behavioral Model, Computer

Graphics, 24(4), 25-34.

[16] LOREK, H. AND WHITE, M., 1993. Parallel Bird
Flocking Simulation,

[17] DELOURA, M., 2001. GAME PROGRAMMING

Gems 2, Hingham: CHARLES RIVER MEDIA, INC.

[18] VEMURI, C. B., CAO, Y., AND CHEN, L., 1998.
Fast Collision Detection Algorithms with
Applications to Particle Flow, Computer Graphics

forum, 17(2), 121-134.

[19] TISNOVSKY, P., AND HEROUT, A., 2002.
Adaptive Algorithm for Vector Field Interpolation
Based on Octree Structure, International Conference

on Computer Graphics and Interactive Techniques

Proceedings of the 18th spring conference on

Computer graphics, 151-156

