
Hannes Ricklefs (d1132332) 3/24/2005

Page 1 of 5

Programming for Graphics
Particle System implementation report

Hannes Ricklefs

d1132332@bmth.ac.uk
University of Bournemouth

ABSTRACT
This report is structured into three different sections. The first section gives a brief introduction into particle systems.
The second provides a description of each of the components that combine the particle system. The third gives a brief
summary of the report and the main focus during implementation of the particle system.

Keywords
Particle System, Particles, Emitter, Solver, Data Structures

1. INTRODUCTION... 1
2. PARTICLE SYSTEM... 1

2.1 Overview... 1
2.2 Particle System Manager 1
2.3 Particle System... 2
2.4 Emitter .. 2
2.5 Particles... 2
2.6 Solver and Forces... 3
2.7 Data Structure... 3
2.8 CollisionObjects ... 4

3. SUMMARY... 4
4. APPENDIX A.. 5
5. APPENDIX B.. 5
6. REFERENCES .. 5

1. INTRODUCTION
Since their introduction in 1983 particle systems have
become one of the fundamental parts of computer
animation [1]. The pioneer in this area is William T.
Reeves, in his initial paper he describes the use of particle
systems to model “fuzzy” objects such as fire and clouds.
Since then particle systems have been used in scientific
simulations, feature films [1,8] and games [10] to model
almost any kind of natural phenomena including smoke
[3,6,8], fire [1,3,4,8], water [4,6,9], explosions [1,5,7],
plant growth [2] and galaxies [3].

2. PARTICLE SYSTEM

2.1 Overview
As described by Reeves [1] a particle system is defined by
a collection of particles that evolve over time. The
evolution is determined through applying certain rules to
the particles: creation of new particles, changing their
attributes during their lifetime and finally the destruction
(“death”) of old particles. The main essence of a particle
system is that all of the afore mentioned rules are
executed automatically. In general, particle systems are
constructed using the following components: particles,
emitters and solvers [1,2,3,4,5,10,11,12,13,14].

The implementation evolves its particles according to
these five steps [1,10,11].

1) New particles are generated and injected into the
current system.

2) Each new particle is assigned its individual
attributes.

3) Any particles that have exceeded their lifetime
are extinguished.

4) The current particles are moved according to
their scripts.

5) The current particles are rendered.

The main aim of the initial design was to have a particle
system that is highly Object Orientated for all the
components in the system. The implemented components
are Particle System Manager, Particle System,

Emitter, Particle, Solver, Force, CollisionObject, and
Data Structure.

2.2 Particle System Manager
In his article J. Burg mentions a Particle System Manager,
which controls all the various particle systems [5]. As the

Hannes Ricklefs (d1132332) 3/24/2005

Page 2 of 5

initial design supports multiple particle systems a
manager class becomes important. The manager class is
in charge of creating, removing, updating, and rendering
all of its particle systems. In addition functions for
interaction have been added in order to reset, pause and
restart the particle system manager. The initial design
proposed that the particle system manager renders
according to a GraphicsLib::ThreadTimer this has been
moved into the main class and the rendering and evolving
is done through specifying the frame rate per second.

2.3 Particle System
The particle system class is responsible for holding all the
initialization values for its solver, particles, and emitter.
One aspect of the inital design was to be able to combine
particle systems in such a way that a particle system itself
can include other particle systems in order to create
images as in Figure.1 [1]. Because of time limitations this
feature has not been tested jet.

Figure.1 from [1]

 Furthermore, the particle system is able to change over
time, which will allow effects like a glowing cigarette
particle that turn into smoke. Therefore the particle
system class needs to hold all the relevant attributes,
solvers and emitters to make the changes to its particles.
The effects that have been implemented are changing of
size and change of colour over time as well as updating
the Particles position. Evermore, the particle system
counts the number of alive particles to determine whether
a system is ready to be deleted or not.

The initial class diagram in Appendix A shows two
subclasses of the particle system class: Behavior Particle
System and Effect Particle System. The Behavior Particle
System enables interaction between particles in order to
model flocking behavior [15,16]. However as seen in the
final class diagram in Appendix B these because of time
restrictions these have not been implemented.

The demon program shows to possibilities of using the
Particle System to create fire and smoke which could be
made into a subclass of Particle System Class to provide a
Fire or Smoke Effects Particle System. This would allow

other developers to use the particle system as an
application programmer interface (API) [13]. In addition
further method for pausing and restarting the Particle
System have been added. To be able to draw Particles
with Textures in a efficient way the Particle System has a
Texture attribute which is checked for in the draw method
in order to do the Texture binding once for all Particles.

2.4 Emitter
For a particle system to evolve and change its volume
over time new particles need to be added to the system.
This is the main work of the emitter, who generates new
particles by means of controlled stochastic processes
[1,11]. For each frame new particles are randomly emitted
into the system according to some user specified
distribution [11]. The actual number of new Particles to
be emitted is specified in the Particle System Class it
emits new Particles according to the following function

(Eq. 1) NParts = RandomPosNum(varNumParticles)

Where RandomPosNum(_) returns a random number
between 0.0 and +varNumParticles,

In the proposed design all particle behaviour is assigned
from the emitter: Emitting direction, Initial velocity,

Initial Position, Color, Flare Colour, Size, Flare Size

and Texture Map. All the initial values will be set at the
beginning of a particle’s life.

The class diagram in Appendix A and Appendix B shows
that the Emitter class is an abstract class. In order to have
the most flexibility when creating new particles the
following Emitter types are implemented:

1) PointEmitter: Particles are emitted from point in
3D space. The Emitter has a sweep angel for
allowing the Particles to be emitted in a spherical
motion

2) PlanarEmitter: Particles are emitted from a plane.
The Emitter takes two dimension vectors and
randomly selects points between these two
vectors as the initial position.

In addition to the original design the author added a
method called rebirth, which takes a pointer to a Particle
and reinitialises its values. This is needed for the dead
pool as described in section 2.7.

2.5 Particles
The particles determine the motion, volume, color and
general appearance of the particle system. Typical
Attributes according to [1,5,11] are: position, velocity,

color, transparency, and lifetime. In [5] J. Burg adds
two attributes oldPosition, texture and dead. OldPosition
enables to stretch a particle between its old and new
position, which can be useful when creating sparks.
Texture enables particles to have a texture assigned to
them. The attribute dead is particular effect introduced by

Hannes Ricklefs (d1132332) 3/24/2005

Page 3 of 5

J. Burgs article. He states that instead of deleting and
creating new particles, a dead particle should be flagged
and then reinitialized when new particles are created. This
reduces the amount of memory access and is hence faster.

In [4] Sims adds jet another attribute called bounce,

which specifies what happens to a particle when colliding
with other particles or objects in the scene.

The class diagram in Appendix A and Appendix B shows
that the particle class has subclasses. The implemented
subclasses are:

1) PointParticle: A Particle is a sphere in space,
which has a radius.

ImgParticle: A ImgParticle contains a Texture
which is projected on to a quad which can be
changed in size to increase the size. Additionally
special test are made to enable Billboarding.

2) StrikeParticle: A StrikeParticle stores the current
and old position. When its draw function is
called it draws a line between these in order to
enable effects like sparks and strikes.

2.6 Solver and Forces
In order to create any of the effects mentioned in section 1
the particles need to be animated. Although many effects
need specialized algorithms, this particle system is
designed to incorporate new algorithms very easily. By
specifying a Solver interface newly created algorithms
can be “plugged” into the particle system. The literature
presents all kinds of different solvers from basic linear
solvers to advanced solvers using Navier-Stokes
equations [6,8,9]. In [3,4,14] the authors are introducing
Forces into the movement of the particles. To give more
flexibility this design separates the forces into classes in
order for the Solver to choose one or many correct forces.
In [14] A. Witkin groups the forces into three broad
categories, which form the three subclasses of the Force
class:

1. Unary forces, such as gravity and drag, that act
independently on each particle, either exerting a
constant force, or one that depends on one or
more particle positions, particle velocity, and
time.

2. n-ary forces, such as springs, that apply forces to
a fixed set of particles.

3. Forces of spatial interaction, such as attraction
and repulsion, which may act on any or all pairs
of particles, depending on their positions.

All the Forces need to have a Force vector that affects the
Particles motion according to a specified attenuation. If

the attenuation is set to 1 the Force is completely applies.
The implemented Forces are:

1. RandomForce: Applies the specified Force
vector randomly to the given velocity of the
Particle.

2. GravityForce: Applies the specified Force vector
including the magnitude to the Particles velocity
vector.

3. UniformForce: Applies the specified Force
vector directly to the Particles velocity vector

The class diagram in Appendix A. shows the Solvers the
author is proposing to implement. Appendix B shows the
Solvers the Author implemented:

1. StraightSolver: Solves particle movement
according to a linear equation. Particles fly
through space at constant time.

2. Gravity Solver: Solves particle movement
according using gravity. Particles fly through
space and the direction and speed varies
according to the laws of gravity.

3. Navier-Stokes Solver: This is the most advanced
Solver. In order for the Solver to work properly a
3D data structure is needed [6,18,19].

Appendix B shows the Solvers the Author implemented:

1. StraightSolver: When no Force is added to the
Solver the StraightSolver just adds the current
velocity to its self. If however Forces are added
to the StraightSolver it adds these in turn to
affect the Particles motion.

2.7 Data Structure
Through the ever-increasing speed of processing power in
computer hardware, particle systems are reaching a stage
at which they can be used to create effects close to reality
in real-time [3]. In the special effects industry this is still
not achieved [8]. In order to create satisfying results in
real-time, the number of particles used within a particle
system needs to be within thousands [5]. Therefore an
efficient data structure is needed to store the particles.

Whenever complex or efficient storage requirements are
needed, the literature refers to Octrees [6,12,18,19].
Octrees are a hierarchical construct for spatially managing
large amounts of three-dimensional data [12,17]. Their
construction is well documented and researched
[12,17,18]. The usual approach is to start with a three-
dimensional cube and continually subdivide it into eight
cubes until either a specified cube size is reached or there
are no more objects that could be subdivided. See figure
2.

Hannes Ricklefs (d1132332) 3/24/2005

Page 4 of 5

 Figure 2 from [19]

When implementing an Octree data structure for particle
systems, additional aspects need to taken into
consideration. The main aspects are finding neighbors on
the faces, edges and vertices of the corners, the constant
subdividing of the sub-cubes, and changing particles from
one cube to another.

The main benefit of Octrees is the ability to store extra
information within nodes that can be applied when
solving the animation of the particles using the Navier-
Stokes solver.

The class diagram in Appendix A. shows additional data
structures the author proposes:

1. Grid: A three-dimensional grid structure with a
gird size of 30 * 30 * 30.

2. List: A data structure that uses a list container
class from the standard C++ library. Here some
special sorting algorithm (bubble or quick sort)
is going to store the particles in an order relating
to their position in the particle space. Another
approach would be to cluster particles according
to their location, as stated in section 2.5.

3. Octree: The aforementioned data structure.

However the author only had time to implement one
DataStructure called VectorDS. This DataStructure uses
the standard vector container class to store the Particles.

It is the data structures responsibility to do collision
detection between the particles and objects from within
the scene. Additionally, the data structure is responsible
for creating a pool of deleted “dead” particles that can be
reused when new particles are created.

2.8 CollisionObjects
During the Implementation the author realized the need
for detecting collision between the Particles and Object
within the scene. To generate this in a Object Orientated
design the author decided to generate Collision Objects
which have to have a collision method. This method takes
a Particle Pointer and does internal tests whether collision
has occurred. If it did it changes the Particles velocity
accordingly. Furthermore the CollisionObjects include
methods for drawing themselves and methods for
translation, scaling and rotation.

The implemented CollisionObjects are:

1. CollisionSphere: Does simple SphereSphere
collision tests. When collision occurs the
velocity of the Particle is simply reversed.

2. CollisionPlane: Does simple SpherePlane
collision detection. This Class is not completed
jet.

3. SUMMARY
This report outlined the components the author included
in his original design and show the implement
components. His main focus is on the extendibility of any
of the components through Object Orientated
programming. Furthermore it was the authors aim to
create the main skeleton for all the Superclasses to lay
down the fundamental building blocks for the Particle
System. It has to be mentioned that the author mainly
wanted to have all the methods defined that are needed for
the Particle System it is therefore possible to find methods
that are still not implemented. They are there to show
what the author has planed for future development.

The outline of the algorithm for evolving a particle
system is as follows:

Create particles

Initialize particles

For each frame:

 For each simulation time increment:

 Select particles

 Perform operations

 Update position and other attributes

 Evolve age remove dead particles

Render

The resulting demonstrations of the particle system are
include: fire, smoke, and collision detection.

Hannes Ricklefs (d1132332) 3/24/2005

Page 5 of 5

4. APPENDIX A

5. APPENDIX B

6. REFERENCES
[1] REEVES, W. T., 1983. Particle Systems – A

Technique for Modeling a Class of Fuzzy Objects,
ACM Transaction on Graphics, 2 (2), 359-367.

[2] REEVES, W. T., AND BLAU R., 1985.
Approximate and Probabilistic Algorithm for
Shading and Rendering Structured Particle Systems,
Computer Graphics, 19(3), 313-322.

[3] ILMONEN, T., AND KONTKANEN J., 2003. The
Second Order Particle System, Journal of WSCG,

11(1)

[4] SIMS, K., 1990. Particle Animation and Rendering
Using Data Parallel Computation, Computer

Graphics, 24(4), 405-413.

[5] BURG, J., 2000. Building an Advanced Particle
System, GAME DEVELOPER, 44-50.

[6] FEDKIW, R., GIBOU, F., AND LOSASSO, F.,
2004. Simulating Water and Smoke with an Octree

Data Structure, SIGGRAPH 2004 ACM TOG, 23,
457-462.

[7] FELDMAN, E. B., O`BRIAN F. J., AND ARIKAN,
O., 2003. Animating Suspended Particle Explosions,
ACM SIGGRAPH 2003, San Diego, CA, July 27-31,

1-8.

[8] FEDKIW, R., ENRIGHT, D., AND NGUYEN, D.,
2003. Simulation and Animation of Fire and Other
Natural Phenomena in the Visual Effects Industry,
Western States Section, Combustion Institute, Fall

Meeting, UCLA, 2003.

[9] MÜLLER, M., CHARYPAR, D., AND GROSS, M.,
2003. Particle-Based Fluid Simulation for Interactive
Applications, Eurographics/SIGGRAPH Symposium

on Computer Animation (2003).

[10] WATT, A. AND POLICARPO F., 2001. 3D GAMES

Real-time Rendering and Software Technology, New
York: ADDISON-WESLEY

[11] PARENT, R., 2002. Computer Animation Algorithms

and Techniques, London:Morgen-Kaufmann.

[12] FOLEY D. J., VAN DAM, A., FEINER, K. S., AND
HUGES, F. F., 1997. Computer Graphics

PRINCIPLES AND PRACTICE, 2nd ed. New York:
Addison-Wesley.

[13] MCALLISTER, K. D., 2000. The Design of an API
for Particle Systems, Technical report, University of

North Carolina, 2000.

[14] WITKIN, A., 1999. Physically Based Modeling
Principles and Practice – Particle Systems,
SIGGRAPH-99 Course Notes.

[15] REYNOLDS, W. C., 1987. Flocks, Herds, and
Schools: A Distributed Behavioral Model, Computer

Graphics, 24(4), 25-34.

[16] LOREK, H. AND WHITE, M., 1993. Parallel Bird
Flocking Simulation,

[17] DELOURA, M., 2001. GAME PROGRAMMING

Gems 2, Hingham: CHARLES RIVER MEDIA, INC.

[18] VEMURI, C. B., CAO, Y., AND CHEN, L., 1998.
Fast Collision Detection Algorithms with
Applications to Particle Flow, Computer Graphics

forum, 17(2), 121-134.

[19] TISNOVSKY, P., AND HEROUT, A., 2002.
Adaptive Algorithm for Vector Field Interpolation
Based on Octree Structure, International Conference

on Computer Graphics and Interactive Techniques

Proceedings of the 18th spring conference on

Computer graphics, 151-156

